Turbulent Flows
Stephen B. Pope
Cambridge University Press (2000)

Solution to Exercise 13.1

Prepared by: Daniel W. Meyer
Date: 19/6/06

Combining Eq.(13.1) with the temporal derivative of the filtered velocity field $\overline{\mathbf{U}}(\mathbf{x}, t)$ leads

$$
\begin{align*}
\frac{\partial \overline{\mathbf{U}}}{\partial t} & =\frac{\partial}{\partial t}\left(\int G(\mathbf{r}, \mathbf{x}) \mathbf{U}(\mathbf{x}-\mathbf{r}, t) d \mathbf{r}\right) \\
& =\int G(\mathbf{r}, \mathbf{x}) \frac{\partial \mathbf{U}(\mathbf{x}-\mathbf{r}, t)}{\partial t} d \mathbf{r} \\
& =\overline{\left(\frac{\partial \mathbf{U}}{\partial t}\right)} \tag{1}
\end{align*}
$$

which is equivalent to Eq.(13.6).
Starting from $\langle\overline{\mathbf{U}}\rangle$ combined with Eq.(13.1) one has

$$
\begin{align*}
\langle\overline{\mathbf{U}}\rangle & =\left\langle\int G(\mathbf{r}, \mathbf{x}) \mathbf{U}(\mathbf{x}-\mathbf{r}, t) d \mathbf{r}\right\rangle \\
& =\left\langle\lim _{n \rightarrow \infty} \sum_{\mathbf{k}} G\left(\mathbf{r}_{\mathbf{k}}, \mathbf{x}\right) \mathbf{U}\left(\mathbf{x}-\mathbf{r}_{\mathbf{k}}, t\right) \Delta \mathbf{r}\right\rangle \\
& =\lim _{n \rightarrow \infty} \sum_{\mathbf{k}} G\left(\mathbf{r}_{\mathbf{k}}, \mathbf{x}\right)\left\langle\mathbf{U}\left(\mathbf{x}-\mathbf{r}_{\mathbf{k}}, t\right)\right\rangle \Delta \mathbf{r} \\
& =\int G(\mathbf{r}, \mathbf{x})\langle\mathbf{U}(\mathbf{x}-d \mathbf{r}, t)\rangle d \mathbf{r} \\
& =\overline{(\langle\mathbf{U}\rangle)} . \tag{2}
\end{align*}
$$

In the second step, the triple integral over the displacement vector $d \mathbf{r}$ was replaced by a triple sum similarly to

$$
\begin{equation*}
\int_{a}^{b} f(r) d r=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(r_{k}\right) \Delta r \tag{3}
\end{equation*}
$$

for one dimension, an arbitrary function $f(r), r_{k}=a+k \Delta r$ and $\Delta r=\frac{b-a}{n}$. In the third step, the linearity properties Eq.(3.26) and Eq.(3.27) of the average could then be used, resulting in the relation given by Eq.(13.7).

Similarly to Eq.(1), the spatial derivative can be written with Eq.(13.1)

$$
\begin{align*}
\frac{\partial \overline{U_{i}}}{\partial x_{j}} & =\frac{\partial}{\partial x_{j}}\left(\int G(\mathbf{r}, \mathbf{x}) U_{i}(\mathbf{x}-\mathbf{r}, t) d \mathbf{r}\right) \\
& =\int \frac{\partial}{\partial x_{j}}\left(G(\mathbf{r}, \mathbf{x}) U_{i}(\mathbf{x}-\mathbf{r}, t)\right) d \mathbf{r} \\
& =\int G(\mathbf{r}, \mathbf{x}) \frac{\partial U_{i}(\mathbf{x}-\mathbf{r}, t)}{\partial x_{j}} d \mathbf{r}+\int \frac{\partial G(\mathbf{r}, \mathbf{x})}{\partial x_{j}} U_{i}(\mathbf{x}-\mathbf{r}, t) d \mathbf{r} \\
& =\overline{\left(\frac{\partial U_{i}}{\partial x_{j}}\right)}+\int \frac{\partial G(\mathbf{r}, \mathbf{x})}{\partial x_{j}} U_{i}(\mathbf{x}-\mathbf{r}, t) d \mathbf{r} \tag{4}
\end{align*}
$$

which is Eq.(13.8).

> | This work is licensed under the Creative Commons Attribution- |
| :--- |
| NonCommercial-ShareAlike License. To view a copy of this license, visit |
| http://creativecommons.org/licenses/by-nc-sa/1.0 or send a letter to Cre- |
| ative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. |

